REGULAR ARTICLE

Basicity of bisperhalophenyl aurates toward closed-shell metal ions: metallophilicity and additional interactions

José M. López-de-Luzuriaga · Miguel Monge · M. Elena Olmos · María Rodríguez-Castillo · Antonio Laguna · Fernando Mendizabal

Received: 22 October 2010/Accepted: 1 February 2011/Published online: 19 February 2011 © Springer-Verlag 2011

Abstract The interaction of bisperhalophenyl aurates $[AuR_2]^-$ (R = C₆F₅, C₆F₃Cl₂, and C₆Cl₅) with the closedshell Ag^+ , Cu^+ , and Tl^+ ions has been studied theoretically and compared with the experimentally known X-ray diffraction crystal structures. Initially, the aurates have been fully optimized at MP2 level of theory in a D_{2h} symmetry. The analysis of the basicity of the three aurates [AuR₂]⁻ $(R = C_6F_5, C_6F_3Cl_2 \text{ and } C_6Cl_5) \text{ against } Ag^+ \text{ ions in a } C_{2\nu}$ symmetry has been calculated in point-by-point bsse-corrected interaction energy analysis at HF and MP2 levels of theory. Taking into account the experimental observation of additional interactions between the heterometals and Cipso atoms at the perhalophenyl rings or halogen atoms at the ortho position of the perhalophenyl rings, dinuclear models of the type $[AuR_2]^- \cdots Ag^+$ (R = C₆Cl₅, and C₆F₅); $[AuR_2]^- \cdots Cu^+$ (R = C₆F₅, and C₆Cl₅) and $[AuR_2]^- \cdots Tl^+$ $(R = C_6F_5, and C_6Cl_5)$ with a $C_{2\nu}$, C_2 , and C_s symmetries

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

J. M. López-de-Luzuriaga (⊠) · M. Monge (⊠) · M. E. Olmos · M. Rodríguez-Castillo Departamento de Química, Grupo de Síntesis Química de La Rioja, UA-CSIC, Universidad de La Rioja, Complejo Científico-Tecnológico, 26004 Logroño, Spain e-mail: josemaria.lopez@unirioja.es

M. Monge e-mail: miguel.monge@unirioja.es

A. Laguna

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

F. Mendizabal

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile have been optimized at DFT-B3LYP level. The interaction energies have been computed through bsse-corrected single point HF and MP2 calculations. The energy stabilization provided and the heterometal preference have been analyzed and compared with the experimental results.

Keywords Gold · Silver · Copper · Thallium · Metal-metal interactions

1 Introduction

Metallophilic bonding interactions between Au(I) and other closed-shell metals like Ag(I), Cu(I), Hg(II), Tl(I), Pb(II), etc., have been studied from both experimental [1] and theoretical [2-5] viewpoints regarding the intrinsic nature of the interaction and in many cases the photophysical properties associated with them [6, 7]. In the last years, we have used basic aurates such as $[AuR_2]^-$ (R = C₆F₅, $C_6F_3Cl_2$ and C_6Cl_5) that react with Lewis acid metal salts allowing the isolation of complexes bearing unsupported Au(I)...M interactions (M = Ag(I) [8–10], Cu(I) [11, 12], Tl(I) [13–18], and Bi(III) [19]). Ab initio calculations at density functional theory (DFT), Hartree-Fock (HF) and at second-order Møller-Plesset perturbation theory (MP2) levels have permitted the analysis of the nature of these interactions showing a strong ionic character (ca. 80-85% of the interaction) and an additional dispersion-type component (ca. 15-20%) when correlation effects are included in the calculations. The strong stabilization obtained through the formation of these metallophilic interactions (around 250–300 kJ mol⁻¹) has allowed to stabilize many types of structural arrangements as, for instance, Au(I)-Tl(I) loosely bound butterfly clusters (a) [15]; Au(I)–Tl(I) infinite linear (b) [14] or zigzag chains [13, 16, 17]; $Au_2(I)-Ag_2(I)$ tetranuclear units linked through aurophilic interactions (c) [8–10]; a $Au(I)-Ag_4(I)$ square pyramidal disposition in which two anionic fragments attract each other (d) [20] or polymeric Cu(I)-pyrimidine chains displaying unsupported $Au(I)\cdots$ Cu(I) interactions at each copper site (e) [11] (see Scheme 1).

A deeper analysis of the experimental X-ray structures of many of these heterometallic $[AuR_2]^- \cdots M^{n+}$ systems permits to observe a common trend, which is the concomitant presence of heterometallic Au(I)...M closed-shell interactions with weaker $M \cdots C_{ipso}$ (C_{ipso} = ipso carbon from the perhalophenyl rings bonded to gold) and/or M…X (X = halogen atom in ortho position of the perhalophenyl)rings) interactions, depending on the heterometal and on the pentahalophenyl rings (See Table 1). We have theoretically accounted previously for the M...Cipso weak interactions in the study of the Au(I)-Ag₄(I) square pyramidal case [20] or in the calculations performed on $[Au(C_6F_5)(ylide)] \cdots [Ag_2(CF_3CO_2)_2]$ [21] systems showing an additional stabilization through two Cipso---Ag interactions of 21 kJ mol⁻¹, in the first case, and one C_{ipso} ...Ag interaction of 37 kJ mol⁻¹ in the second one. From an experimental viewpoint, the presence of M...Cipso interactions is always observed when $M = Ag^+$ or Cu^+ and $R = C_6F_5$ or $C_6F_3Cl_2$ (no structural data available for C_6Cl_5) and to a lesser extent when $M = Tl^+$, while the $M \cdots X_{ortho}$ interactions are widely observed for $M = Tl^+$ and $R = C_6 Cl_5$, $C_6 F_5$, or $C_6 F_3 Cl_2$, but not observed for $M = Ag^+$ or Cu^+ and $R = C_6F_5$ or $C_6F_3Cl_2$. Since the M-Cipso and M-Xortho distance also depends on the Au-M distance, it seems that a larger size of the heterometal (Tl) and the halogen in ortho position (Cl) favors the M...X interaction rather than the $M \cdots C_{ipso}$ (see Table 1 for a

Scheme 1 Representative examples of heterometallic Au–M complexes built up through the interaction between aurates and Lewis acid metal centers such us Ag(I), Cu(I), and Tl(I)

summary of a structure search in the Cambridge Structural Database).

In order to generalize the preference of the heterometals for one of these supplementary interactions and the stabilization that they provide, we have calculated DFT, HF, and MP2 on different model systems. First, we have fully optimized the $[AuR_2]^-$ (R = C₆F₅, C₆F₃Cl₂ and C_6Cl_5) basic units by using a D_{2h} symmetry at MP2 level. Then, in order to check the basicity of the different aurates, we have evaluated the interaction energy between these aurate units and one Ag⁺ cation using models with $C_{2\nu}$ symmetry at HF and MP2 levels. We have checked both the ionic and dispersive components of the metallophilicity for these $C_{2\nu}$ models, depending on the perhalophenyl rings bonded to gold(I) at different interaction distances. Once the basicity of the aurates has been established and taking into account that the main component of the interaction is ionic, we have also fully optimized at DFT level the dinuclear $[AuR_2]^- \cdots M^+$ systems allowing the M^+ (M = Ag, Cu and Tl) centers to interact both with the C_{ipso} (C_s symmetry) or the X_{ortho} atoms of the perhalophenyl rings (C2 symmetry). The computed bsse(basis set superposition error)-corrected MP2 interaction energies of these DFT-optimized models permit to check the preference of the heterometal for a weak interaction additional to the metallophilicity and compare it with the experimental results (see Fig. 1).

2 Methodology

All calculations were made using the Gaussian 03 package program [34]. The molecular geometries of model systems

Theor Chem Acc (2011) 129:593-602

Table 1 Interaction distances between aurates and Ag(I), Cu(I), or Tl(I) closed-shell centers obtained from the Cambridge Structural Database

Compound	Au…M	$M \cdots C_{ipso}$	M···X	CCDC ref	Reference
$[Au_{2}Ag_{2}(C_{6}F_{5})_{4}(tht)_{2}]_{n}$	2.717	2.803	_	BAJME	[22]
$[Au_2Ag_2(C_6F_5)_4(C_6H_6)_2]_n$	2.792	3.408	-	CEGSOW	[23]
$[Au_2Ag_2(C_6F_5)_4(Me_2CO)_2]_n$	2.783, 2.791	2.440	-	EBIGAX	[8]
$[Au_2Ag_2(C_6F_5)_4(thf)_2]_n$	2.771, 2.758	2.467	-	EGOHIX	[<mark>9</mark>]
$[Au_2Ag_2(C_6F_5)_4(MeCN)_2]_n$	2.758, 2.827	2.687	-	VENWOB	[10]
$[AuAg_4(C_6F_3Cl_2)_2(CF_3CO_2)_5]^{2-}$	3.013-2.902	2.450, 2.439	-	XALWUD	[20]
[AuCu(C ₆ F ₅) ₂ (MeCN)(Pyrim)] _n	2.821	2.628	-	RAQFIZ	[11]
$[Au_2Cu_2(C_6F_5)_4(MeCN)_2]_n$	2.574	2.142	-	VENWUH	[10]
$[AuCu(C_6F_5)_2(MeCN)_2]_n$	2.933	2.913	-	-	[12]
$[Au_2Cu_2(C_6F_5)_4(PhCN)_4]$	2.616-2.609	2.723, 2.706	-	-	[12]
$[AuCu(C_6F_5)_2(MeCN)_2]_n$	2.672	2.638	-	-	[12]
$[Au_2Tl_2(C_6Cl_5)_4(4,4'-bipy)]_n$	3.056	-	3.317, 3.484	AZUDUU	[24]
$[Au_2Tl_2(C_6Cl_5)_4(4,4'-bipy)_2]_n$	2.964	_	3.438, 3.547	AZUFAC	[24]
$[Au_4Tl_4(C_6Cl_5)_8(4,4'-bipy)_3]_n$	3.122	_	3.448-3.685	AZUFEG	[24]
$[Au_2Tl_2(C_6Cl_5)_4(4,4'-bipy)_2]_n$	3.111	_	3.527-3.689	AZUFIK	[24]
$[AuTl(C_6Cl_5)_2(thf)_2]_n$	3.076	_	3.362	BEXFUG	[25]
$[AuTl(C_6Cl_5)_2(acacH)_2]_n$	2.969	_	3.652, 3.658	BEXGAN	[25]
$[Au_2Tl_2(C_6Cl_5)_4(thf)]_n$	2.908	-	3.351, 3.623	BEXGER	[25]
$[Au_2Tl_2(C_6Cl_5)_4(Me_2CO)]$	3.033, 3,188	-	3.297-3.492	EFOWOL	[15]
$[AuTl(C_6F_5)_2(1,10\text{-phen})]_n$	3.082, 3.140	-	2.898	FENKAL	[26]
$[AuTl(C_6F_5)_2(2,2'-bipy)]_n$	3.012, 3.490	-	2.875	FENKEP	[26]
$[AuTl(C_6F_5)_2(4,4'-bipy)(thf)]_n$	3.215, 3.480	-	_	FENKIT	[26]
$[Au_2Tl_2(C_6F_5)_4(4,4'-bipy)_2]_n$	3.016	3.517	_	IFECAX	[27]
$[Au_4Tl_4(C_6Cl_5)_8(4,4'-bipy)_3(thf)_2]_n$	3.032, 3.054	-	3.549, 3.556	IFECEB	[27]
$[Au_2Tl_2(C_6Cl_5)_4(toluene)2(1,4-diox)]$	2.893	3.447	3.577	ILIYOR	[28]
$[AuTl(C_6F_5)_2(OPPh_3)_2]_n$	3.036, 3.086	-	3.402, 3.405	JOWYEZ	[29]
$\{[NBu_4]_2[Au_6Tl_4(C_6Cl_5)_{12}]\}_n$	3.056-3.168	3.510	3.542	KAKGAF	[30]
$\{[NBu_4]_2[Au_4Tl_2(C_6F_3Cl_2)_8]\}_n$	2.970-3-120	3.552	2.924-3.239	KAKGEJ	[30]
$\{[NBu_4]_2[Au_4Tl_2(C_6Cl_5)_4(C_6F_3Cl_2)_4]\}_n$	3.011-3.091	3.557	2.916-3.48	KAKGIN	[30]
$[Au_2Tl_2(C_6Cl_5)_4(OPPh_3)_2(thf)]_n$	3.053-3.163	3.463	3.391-3.638	RUWTOS	[13]
$[Au_2Tl_2(C_6Cl_5)_4(OPPh_3)_2(Me_2CO)]_n$	3.094-3.245	_	3.370-3.444	RUWTUY	[14]
$[AuTl(C_6Cl_5)_2(toluene)]$	2.911	3.519-3.562	3.332-3.365	SICLAS	[31]
$[Au_2Tl_2(C_6F_5)_4(DMSO)_3]_n$	3.222-3.246	_	2.864-3.383	TAXZEY	[32]
$[Au_4Tl_4(C_6Cl_5)_8(DMSO)_4]_n$	3.122-3.284	_	3.227-3.708	TAXZIC	[32]
$[Au_4Tl_4(C_6Cl_5)_8(^{i}Pr\text{-}en)_4]_n$	2.973-3.026	_	3.634	TEGTOP	[<mark>16</mark>]
$[Au_2Tl_2(C_6Cl_5)_4(2^{-i}Pr-en)_2]_n$	3.052, 3.088	3.575-3.600	3.654	TEDTUV	[<mark>16</mark>]
$[Au_2Tl_2(C_6F_5)_4(2^{-i}Pr-en)_2]_n$	3.045, 3.143	3.587	3.404	TEGVAD	[<mark>16</mark>]
$[AuTl(C_6Cl_5)_2]_n$	2.973, 3.004	_	3.244, 3,350	TUVMUS	[14]
${[NBu_4][Au_3Tl_2(C_6F_4Br)_6]}_n$	3.035-3.125	_	3.013-3.392	VOFBEI	[17]
$\{[NBu_4]_2[Au_6Tl_4(C_6F_4Br)_{12}]\}_n$	2.996-3.466	3.541	2.933-3.643	VOFBIC	[17]
$\{[NBu_4]_2[Au_4Tl_2(C_6F_4Br)_8]\}_n$	2.935-3.021	3.485	3.231-3.735	VOFBOI	[17]
$[Au_2Tl_2(C_6Cl_5)_4(MePhCO)]$	3.017-3.231	-	3.243-3.440	WATHIJ	[33]
$[Au_2Tl_2(C_6Cl_5)_4(acacH)]$	3.085-3.133	_	3.168-3.525	WATHOP	[33]
$[Au_2Tl_2(C_6Cl_5)_4(acacH)(4,4'-bipy)]$	3.031	-	3.241	WATHUV	[33]

 $[Au(C_6F_5)_2]^-$, $[Au(C_6F_3Cl_2)_2]^-$, and $[Au(C_6Cl_5)_2]^-$ were fully optimized at MP2 level of theory using a D_{2h} symmetry. Electronic correlation effects, keeping the core

orbitals frozen, were also included in further single point calculations on model systems $[AuR_2]^-\cdots Ag^+$ (R = C_6F_5, C_6F_3Cl_2 and C_6Cl_5) at various Au–Ag distances by using

Fig. 1 Electron density maps from total MP2 density (isoval = 0.02; mapped with electrostatic potential (ESP)) for model systems $[AuR_2]^-$ ($R = C_6F_5, C_6F_3Cl_2$, and C_6Cl_5)

second-order Møller-Plesset perturbation theory or Hartree–Fock calculations. The interaction energy at Hartree– Fock (HF) and MP2 levels of theory was obtained according to Eq. 1:

$$\Delta E = E_{AB}^{(AB)} - E_A^{(AB)} - E_B^{(AB)} = V(R)$$
(1)

A counterpoise correction for the basis set superposition error (bsse) [35] on ΔE was thereby performed, where $E_{AB}^{(AB)}$ is the total energy of the dimer AB (A = aurate unit, $B = M^+$ heterometal) calculated with the full basis set AB of the dimer; $E_A^{(AB)}$ and $E_B^{(AB)}$ denote the total energies of monomers A and B, respectively, computed with the dimer basis set AB, i.e., in the calculation of monomer A the basis set of the "other" monomer B is present at the same location as in dimer A, but the nuclei of B are not. In this way, the basis set for each monomer is extended by the functions of the other monomer. The optimized interaction energies (ΔE) and Au···M distances for models $[AuR_2]^-$ ···Ag⁺ $(R = C_6F_5, C_6F_3Cl_2 \text{ and } C_6Cl_5)$ have been estimated. We fitted the calculated points using the four-parameter Eq. 2, which had been previously used to derive the Herschbach-Laurie relation (see Fig. 2) [36]:

$$\Delta E = V(R) = Ae^{-BR} - CR^{-n} \tag{2}$$

The additional stabilization produced by the interaction of the heterometals with the C *ipso* or with the halogen atoms in *ortho* position of the perhalophenyl rings has been studied through the full BSSE-corrected MP2 calculation of DFT-B3LYP-optimized models $[AuR_2]^-...Ag^+$ $(R = C_6Cl_5 \text{ and } C_6F_5)$; $[AuR_2]^-...Cu^+$ $(R = C_6F_5 \text{ and} C_6Cl_5)$ and $[AuR_2]^-...Tl^+$ $(R = C_6Cl_5 \text{ and } C_6F_5)$ with a $C_{2\nu}$, C_2 , and C_s symmetries.

The following basis set combination was employed: for the metals, the 19-VE or 21-VE pseudopotentials from Stuttgart and the corresponding basis sets [37] augmented with two f polarization functions were used [38]; the atoms C, Cl, and F were treated by Stuttgart pseudopotentials [39], including only the valence electrons for each atom. For these atoms, double-zeta basis sets of reference [39] were used, augmented by d-type polarization functions [40].

3 Results and Discussion

We have started this study with the full optimization of the anionic model units $[AuR_2]^-$ (R = C₆F₅, C₆F₃Cl₂, and C₆Cl₅) at MP2 level of theory. The most important theoretical structural parameters appear in Table 2. These results are close to the experimental ones [41]. The electron density from total MP2 density mapped with the electrostatic potential (ESP) displays the charge distribution on each aurate unit what gives a qualitative idea of the potential interacting sites, taking into account a pure ionic contribution. Also, the NBO analysis on the three models displays the partial charges on the atoms (see Table 3). Thus, both the Au(I), Cipso or Xortho display the largest amount of electron density at the corresponding models, making these parts of the molecules potential links to the heterometals (see Fig. 1). In particular, when $R = C_6 F_5$ or C₆F₃Cl₂, the electron density is mostly located at the C_{ipso} and the F atoms of the perhalophenyl rings, while for the case of C_6Cl_5 , the electron density is not located at the C_{inso} and is distributed along all the Cl atoms at the ring. This NBO analysis already points out a preference of M...Clortho

Table 2 Most important optimized structural distances (Å) for models $[AuR_2]^-$ (R = C₆F₅ **A**, C₆F₃Cl₂ **B**, and C₆Cl₅ **C**) at MP2 level of theory in D_{2h} symmetry

	$[\operatorname{Au}(\operatorname{C_6F_5})_2]^-$	$[\mathrm{Au}(\mathrm{C}_6\mathrm{F}_3\mathrm{Cl}_2)_2]^-$	$[\mathrm{Au}(\mathrm{C}_6\mathrm{Cl}_5)_2]^-$
Au-C _{ipso}	2.025	2.025	2.027
C-Xortho	1.346	1.343 (F)	1.749
$C-X_{meta}$	1.344	1.740 (Cl)	1.742
C-X _{para}	1.340	1.338 (F)	1.739

Table 3 Most important NBO charges for $[AuR_2]^-$ models $(R = C_6F_5 \text{ A}, C_6F_3Cl_2 \text{ B}, \text{ and } C_6Cl_5 \text{ C})$ at MP2 level of theory in D_{2h} symmetry

	$[\mathrm{Au}(\mathrm{C}_6\mathrm{F}_5)_2]^-$	$[Au(C_6F_3Cl_2)_2]^-$	$[Au(C_6Cl_5)_2]^-$
Au	0.363	0.364	0.072
Cipso	-0.500	-0.519	-0.034
Xortho	-0.415	-0.411	-0.247
X _{meta}	-0.414	-0.012	-0.224
X _{para}	-0.412	-0.409	-0.215

interaction when $R = C_6Cl_5$ and both possibilities when $R = C_6F_5$ or $C_6F_3Cl_2$ (Table 3).

Since the possible interaction of the acidic closed-shell metal centers (M^+) with the Au(I) centers would have an ionic and a dispersive component, we have analyzed the interaction between the basic aurate units and silver(I) using the HF and MP2 level of theory, which account for the ionic component of the interaction in the HF case and for the ionic and the dispersive component in the MP2 one.

The analysis of the pure Au-Ag interaction by changing the perhalophenyl rings (C_6F_5 , $C_6F_3Cl_2$ and C_6Cl_5) is represented in Fig. 2. The basicity of the three different aurate units has been analyzed at HF and MP2 levels of theory in the model systems $[AuR_2]^- \cdots Ag^+$ (R = C₆F₅, $C_6F_3Cl_2$ and C_6Cl_5). We have observed that the Au-Ag equilibrium distances obtained at HF level is 2.70 Å in all cases, showing a slightly larger stabilization for the model with C_6Cl_5 ligands (-391 kJ mol⁻¹) when compared with the $C_6F_3Cl_2$ (-388 kJ mol⁻¹) and C_6F_5 ligands (-386 kJ mol^{-1}). In any case, the obtained ionic stabilization is already very important for the three models, the bis(pentachlorophenyl)aurate unit being the most basic gold anion. When correlation effects are included an additional stabilization assigned to dispersion for the intermetallic interaction is achieved with the values depending on the perhalophenyl ligand: C_6Cl_5 (-496 kJ mol⁻¹), $C_6F_3Cl_2$ $(-485 \text{ kJ mol}^{-1})$, and C_6F_5 $(-491 \text{ kJ mol}^{-1})$. The difference between the interaction energy at MP2 and HF levels gives the dispersion component of the interaction: C_6Cl_5 $(-105 \text{ kJ mol}^{-1})$, $C_6F_3Cl_2$ (-97 kJ mol⁻¹), and C_6F_5 $(-104 \text{ kJ mol}^{-1}).$

As a conclusion of this set of calculations, the analysis of the HF and MP2 curves shows that the basicity of the aurates is not very different, but it is slightly larger for the pentachlorophenyl-substituted aurate, since the Cl atoms are less electronegative than the F ones and more electron density is available from the aurate unit. This trend is already observed at HF level when correlation effects are not included. The use of MP2 accounts for the dispersive component of the interaction giving rise to results that are consistent with previously calculated ones and showing an

Fig. 2 Interaction energy curves at HF and MP2 levels of theory for model systems $[AuR_2]^- \cdots Ag^+$ (R = C₆F₅, C₆F₃Cl₂, and C₆Cl₅)

ionic character of around 80% and a dispersive component of ca. 20% of the interaction energies. It is worth mentioning that the obtained equilibrium distances are shorter, and the interaction energies larger than in similar systems previously studied. In this study, we are not considering the presence of ligands attached to the heterometals in order to save computational cost and we let a pure positive charge on the different heterometals (Ag, Cu, or Tl) interacting with the aurate units. From an electronic point of view, the "naked" metal ions have a pure +1 charge what would give rise to a stronger ionic interaction with the aurate units. Moreover, the absence of ligands bonded to M^+ ions would give rise to a less steric hindrance allowing shorter interaction distances. The results will be valid for comparison between theoretical models and experimental results.

The second type of calculations are DFT-B3LYP optimization of model systems models [AuR₂]⁻...Ag⁺ $(R = C_6 Cl_5, \text{ and } C_6 F_5); [AuR_2]^- \cdots Cu^+ (R = C_6 F_5, \text{ and } C_6 F_5);$ C_6Cl_5 ; and $[AuR_2]^- \cdots Tl^+$ (R = C_6F_5 and C_6Cl_5) with a $C_{2\nu}$, C_2 , and C_s symmetries. At this level of theory, we can analyze whether the corresponding symmetries depicted in Fig. 3 give rise to stable situations in all cases or not. We use this level of theory since the ionic component of the interaction is the main contribution and DFT is able to reproduce this type of interaction and mimic the dispersive component to some extent [3]. The bsse-corrected MP2 single point calculations on each optimized model system permit the evaluation of the interaction energies between the aurates and the heterometals. Thus, the difference in energy between the $C_{2\nu}$ and C_2 symmetries allows us to account for the M.Xortho interaction energy, while the difference between the $C_{2\nu}$ and the C_s symmetry permits to account for the M…Cipso interaction energy. In the case of M...X interactions, we have used a C2 model with twisted perhalophenyl rings in the bisperhalophenyl unit. This C₂ model would represent two experimentally observed situations such as the described C_2 with twisted rings (c) and a different situation of almost coplanar perhalophenyl rings interacting with two different heterometals at each side of the aurate unit through the gold center and the X atoms in ortho position (d). A summary of all analyzed model systems is depicted in Fig. 3.

Table 4 displays the main structural parameters optimized at DFT level and the bsse-corrected interaction energies at HF and MP2 level of theory for the six goldsilver models. The first important result is that, among the studied cases, the C₂ model system $[Au(C_6F_5)_2]^- \cdots Ag^+$ does not converge within this symmetry. This trend is in agreement with the up to date known examples of X-ray diffraction studies of heteronuclear Au-Ag complexes in which the tendency of the silver(I) centers is similar to the one represented in the C_s symmetry that favors a Ag- C_{ipso} interaction (Table 1). The analysis of the interaction energies for the rest of the model systems also gives rise to important results. Regarding the interaction between the aurates and Ag^+ in a $C_{2\nu}$ symmetry (pure Au···Ag interaction), both analyzed geometries are stabilized by a strong ionic component observed at HF level and an extra stabilization due to dispersive (van der Waals) interactions between the metals at MP2 level. Note that the Au-Ag equilibrium distances and interaction energies obtained for the $C_{2\nu}$ symmetry by the point-by-point analysis at MP2 level discussed earlier or the full DFT optimization and further single point MP2 energy calculation are very similar: 2.56 Å and -496 kJ mol⁻¹ versus 2.60 Å and $-497.5 \text{ kJ mol}^{-1}$ for the $[Au(C_6Cl_5)_2]^{-}...Ag^+$ and 2.58 Å and -491 kJ mol⁻¹ versus 2.60 Å and -491 kJ mol⁻¹ for the $[Au(C_6F_5)_2]^- \cdots Ag^+$ one. These results validate the analysis of the interaction between the aurates and other closed-metal centers through DFT optimizations.

Fig. 3 Representation of the analyzed model systems in this study: $[AuR_2]^-$ (R = C₆Cl₅, C₆F₃Cl₂, and C₆F₅) with a D_{2h} symmetry (**a**); $[AuR_2]^- \cdots Ag^+$ (R = C₆Cl₅ and C₆F₅); $[AuR_2]^- \cdots Cu^+$ (R = C₆F₅ and C₆Cl₅) and $[AuR_2]^- \cdots Tl^+$ (R = C₆F₅ and C₆Cl₅) with a C_{2ν} (**b**), C₂ (**c**), and C_s (**d**) symmetries

Table 4 DFT-B3LYP-optimized Au···Ag, M···C_{*ipso*}, and M···X (X = F or Cl) interaction distances (Å) and HF and MP2-BSSE-corrected interaction energies (kJ mol⁻¹) for models $[AuR_2]^{-}$ ·· $[Ag]^+$ with $C_{2\nu}$, C_2 and C_s symmetries (R = C₆Cl₅, and C₆F₅)

	d(Au…Ag)	$d(M \cdots C_{ipso})$	$d(M \cdots X)$ (X = Cl or F)	$\begin{array}{l} E_{int}(Au \cdots M) \ (HF) \\ E_{int}(Au \cdots M) \ (MP2) \end{array}$	$E_{int}(M \cdots C_{ipso})$ or $E_{int}(M \cdots X)$ (HF and MP2)
$[\operatorname{Au}(\operatorname{C}_6\operatorname{Cl}_5)_2]^-\cdots[\operatorname{Ag}]^+\operatorname{C}_{2\nu}$	2.600	_	-	-389 (HF) -497 (MP2)	-
$[Au(C_6F_5)_2]^- \cdots [Ag]^+ C_{2\nu}$	2.596	-	_	-387 (HF) -491 (MP2)	-
$[\operatorname{Au}(\operatorname{C_6Cl_5})_2]^- \cdots [\operatorname{Ag}]^+ \operatorname{C_2}$	2.705	-	2.572	-415 (HF) -549 (MP2)	-26 (HF) -51 (MP2)
$[\operatorname{Au}(\operatorname{C}_6\operatorname{F}_5)_2]^- \cdots [\operatorname{Ag}]^+ \operatorname{C}_2$	Not converge	d in C ₂ symmetry			
$[\operatorname{Au}(\operatorname{C}_6\operatorname{Cl}_5)_2]^-\cdots[\operatorname{Ag}]^+\operatorname{C}_s$	2.666	2.399	_	-403 (HF) -528 (MP2)	-14 (HF) -30 (MP2)
$[\operatorname{Au}(\operatorname{C}_6\operatorname{F}_5)_2]^-\cdots[\operatorname{Ag}]^+\operatorname{C}_s$	2.681	2.360	_	-404 (HF) -523 (MP2)	-17 (HF) -32 (MP2)

If we have a look at the results for C_2 and C_s symmetries, we obtain slightly larger intermetallic distances than those of the $C_{2\nu}$ models, but we also detect Ag…Cl interactions in the case of the C₂ $[Au(C_6Cl_5)_2]^- \cdots Ag^+$ model and $Ag^+ \cdots C_{ipso}$ interactions in the $C_s [Au(C_6X_5)_2]^- \cdots Ag^+$ (X = Cl and F) model systems. If we subtract the interaction energy of the Au-Ag model with a C₂ symmetry from the $C_{2\nu}$ model, we obtain an additional interaction energy of -26 kJ mol^{-1} at HF level and -51 kJ mol^{-1} at MP2 level that is due to the interaction between two ortho Cl atoms of the pentachlorophenyl rings with the silver center. Similarly, if we subtract the interaction energy of the $[Au(C_6X_5)_2]^- \cdots Ag^+$ (X = Cl and F) models, with a C_s symmetry, from the corresponding $C_{2\nu}$ models, we obtain an additional stabilization of -14 kJ mol^{-1} at HF level and -30 kJ mol^{-1} at MP2 for the model with pentachlorophenyl ligands and -17 kJ mol^{-1} at HF level and -30 kJ mol^{-1} at MP2 for the model with pentafluorophenyl ligands. These additional stabilizations arise from Ag. Cipso interactions for each case. It is worth mentioning that both the Ag…Cl and the Ag…Cipso interactions have an approximately 50% of ionic nature and 50% of dispersion contribution. In view of these results, we can conclude that when pentachlorophenyl ligands are bonded to gold(I), all the studied symmetries are stable, being the C₂ situation (Ag…Cl interactions) more stable than the C_s one $(Ag \cdots C_{inso})$. In the case of pentafluorophenyl ligands, although the model bearing Ag…F interactions does not converge to a minimum, the model displaying one Ag...C_{*ipso*} interaction is -30 kJ mol^{-1} more stable than the pure Au-Ag interaction. From an experimental point of view, most of the Au-Ag complexes characterized through X-ray diffraction analysis display Ag-Cipso interactions as, for instance, in complexes of the type $[Au_2Ag_2(C_6F_5)_4L_2]_n$ [8–10, 22, 23], in agreement with what we observe theoretically. The theoretical results for $[Au(C_6Cl_5)_2]^- \cdots Ag^+$ model systems can be considered as predictions of plausible structural arrangements since there are no experimental structural results with this ligands bonded to gold.

The same type of analysis has been carried out for the study of the tendency of the acidic Cu⁺ ion in its interaction with the different aurates. The main structural parameters optimized at DFT level and the bsse-corrected interaction energies at HF and MP2 level of theory are given in Table 5. In these cases, we observe that at DFT level, both C₂ model systems $[Au(C_6X_5)_2]^- \cdots Cu^+ (X = Cl$ and F) do not converge within this symmetry. Again, this result is in agreement with the already reported examples obtained from the X-ray diffraction studies for Au-Cu complexes. In the same way as for the silver case, the Cu...X interactions are not observed experimentally, and this could be due to the smaller size of the Cu(I) closedshell center [10–12]. The interaction energies between the aurates and Cu^+ in a $C_{2\nu}$ symmetry (pure Au···Cu interaction) are slightly stronger than the above described for the Au-Ag case, but display similar contributions (ca. 80% ionic, 20% dispersion). The optimized Au---Cu interaction distances are also shorter than the Au---Ag cases as it is also observed experimentally.

The results for the Au–Cu models in a C_s symmetry display the expected formation of Au---Cu metallophillic and $Cu \cdots C_{ipso}$ interactions (see Table 5). The optimized intermetallic distances are larger than the ones of the $C_{2\nu}$ models, leading to theoretically predicted Au-Cu and Cu-Cipso distances, which are comparable with the experimental ones. If we subtract the interaction energy of the Au–Cu models with a C_s symmetry from the corresponding $C_{2\nu}$ models, we observe that the C_s symmetries are more stable than the C_{2v} ones in -78 kJ mol^{-1} when R = C₆Cl₅ and -72 kJ mol^{-1} for $R = C_6 F_5$. This additional stabilization is attributed to the formation of a fairly strong $Cu \cdots C_{ipso}$ interaction. In the Au–Cu case, the $Cu \cdots C_{ipso}$ interactions display a 55% of ionic nature and 45% of dispersion. Therefore, we can conclude that the Cu-X interactions are not favored for this type of molecules, while the Cu-Cipso interactions are very strong. Experimentally, all reported Au-Cu complexes [10-12] display the latter interaction, in agreement with this theoretical analysis (Table 1).

	d(Au…Cu)	$d(M \cdots C_{ipso})$	$d(M \cdots X)$ (X = Cl or F)	$\begin{array}{l} E_{int}(Au \cdots M) \ (HF) \\ E_{int}(Au \cdots M) \ (MP2) \end{array}$	$E_{int}(M \cdots C_{ipso})$ (HF and MP2)
$[\operatorname{Au}(\operatorname{C_6Cl_5})_2]^- \cdots [\operatorname{Cu}]^+ \operatorname{C_{2\nu}}$	2.392	_	_	-424 (HF) -531 (MP2)	-
$[Au(C_6F_5)_2]^- \cdots [Cu]^+ C_{2\nu}$	2.390	_	_	-421 (HF) -524 (MP2)	-
$[\operatorname{Au}(\operatorname{C_6Cl_5})_2]^- \cdots [\operatorname{Cu}]^+ \operatorname{C_2}$	Not converged in C ₂ symmetry				
$[Au(C_6F_5)_2]^- \cdots [Cu]^+ C_2$	Not converged	in C ₂ symmetry			
$[\operatorname{Au}(\operatorname{C_6Cl_5})_2]^- \cdots [\operatorname{Cu}]^+ \operatorname{C_s}$	2.492	2.015	_	-467 (HF) -609 (MP2)	-43 (HF) -78(MP2)
$[\operatorname{Au}(\operatorname{C}_6\operatorname{F}_5)_2]^-\cdots[\operatorname{Cu}]^+\operatorname{C}_s$	2.503	2.011	_	-461 (HF) -596 (MP2)	-39 (HF) -72 (MP2)

Table 5 DFT-B3LYP-optimized Au…Cu, M…C_{ipso} and M…X (X = F or Cl) interaction distances (Å) and HF and MP2-BSSE-corrected interaction energies (kJ mol⁻¹) for models $[AuR_2]^-$ … $[Cu]^+$ with $C_{2\nu}$, C_2 and C_s symmetries (R = C₆Cl₅, and C₆F₅)

The theoretical results clearly change when the studied metallophilic interaction is Au(I)...Tl(I). In this case, the preliminary DFT optimizations of the six model systems reveal the first difference with the Au-Ag and Au-Cu cases. Thus, while in the case of the gold-silver and goldcopper interactions, the convergence problems were found for the C₂ symmetry, in the gold-thallium case, the $[Au(C_6F_5)_2]^- \cdots Tl^+$ model in a C_s symmetry does not converge to a minimum within this symmetry and losses the Tl-Cipso interaction proposed at the starting point of the optimization, leading to a C_{2v} symmetry with a pure metallophilic interaction between charged fragments. Experimentally, among the seven Au–Tl complexes bearing C₆F₅ ligands, only one of them, complex $[Au_2Tl_2(C_6F_5)_4(4,4'$ bipy)₂]_n, displays a very weak Tl···C_{ipso} interaction of 3.517 Å [27]. This complex is also special for other reasons as it is the fact that it does not follow the classic Coulomb rules showing a +--+ metal arrangement. All the optimized model systems give rise to short Au…Tl interactions and in the case of C_2 and C_s models additional TI···X and Tl...Cipso interactions, respectively, except for the model system that does not converge to a minimum. The bssecorrected MP2 interaction energies for the $C_{2\nu}$ models show that the Au…Tl interaction is also very strong for these systems with a very important ionic contribution (ca. 80%) and an additional dispersion contribution (ca 20%). These results, although give rise to larger interaction energies due to the absence of ligands bonded to the

heterometals, are in agreement with previously calculated ones in terms of ionic and dispersion percentages [13, 18]. Again, the analysis of the model systems in C_2 or C_s symmetries permits the evaluation of the possible Tl...Xortho and Tl...Cipso interactions, respectively. The interaction energy calculations of the C2 model systems give rise to a larger stabilization than in the corresponding $C_{2\nu}$ models (see Table 6). As we have carried out for the former models, if we subtract the interaction energy of the $C_2 [Au(C_6Cl_5)_2]^- \cdots Tl^+$ model from that of the $C_{2\nu}$ model, we obtain an additional interaction energy of -8.4 kJ mol^{-1} , at HF level and $-15.6 \text{ kJ mol}^{-1}$ at MP2 level, which is due to the interaction between two ortho Cl atoms of the pentachlorophenyl rings with the thallium center. Similarly, the C₂ $[Au(C_6F_5)_2]^- \cdots Tl^+$ model displays an additional stabilization arising from the Tl...Fortho interactions of -20 kJ mol^{-1} at HF level and -22 kJ mol^{-1} at MP2 level. As it can be seen, both the Tl…Cl and Tl…F interactions are possible for this geometry, being the character of the latter almost purely ionic, while the Tl…Cl interaction shows similar ionic and dispersive contributions. If we have a look at the experimentally known Au-Tl complexes in Table 1, only two among 33 complexes do not display a Tl···X interaction.

Regarding the optimized $C_s [Au(C_6Cl_5)_2]^-...Tl^+$ model, the analysis of the additional stabilization arising from a $Tl...C_{ipso}$ interaction shows that it is slightly repulsive at HF level and only attractive by -2 kJ mol^{-1} at MP2 level. This

interaction energies (kJ mol ⁻¹) for models $[AuR_2]^- \cdots [T1]^+$ with $C_{2\nu}$, C_2 , and C_s symmetries (R = C_6Cl_5 and C_6F_5)						
	d(Au…Tl)	$d(M \cdots C_{ipso})$	$d(M \cdots X)$ (X = Cl or F)	$\begin{array}{l} E_{int}(Au \cdots M) \ (HF) \\ E_{int}(Au \cdots M) \ (MP2) \end{array}$	$E_{int}(M \cdots C_{ipso}) \text{ or } E_{int}(M \cdots X)$ (HF and MP2)	
$[Au(C_6Cl_5)_2]^- \cdots [Tl]^+ C_{2\nu}$	2.800	-	_	-344 (HF) -434 (MP2)	_	
$[Au(C_6F_5)_2]^- \cdots [Tl]^+ C_{2\nu}$	2.812	_	-	-339 (HF) -422 (MP2)	-	
$[\operatorname{Au}(\operatorname{C_6Cl_5})_2]^- \cdots [\operatorname{Tl}]^+ \operatorname{C_2}$	2.858	_	3.345	-352 (HF) -450 (MP2)	-8 (HF) -16 (MP2)	
$[Au(C_6F_5)_2]^- \cdots [Tl]^+ C_2$	2.895	_	2.809	-359 (HF) -444 (MP2)	-20 (HF) -22 (MP2)	
$[\operatorname{Au}(\operatorname{C}_6\operatorname{Cl}_5)_2]^-\cdots[\operatorname{Tl}]^+\operatorname{C}_s$	2.812	3.111	-	-343 (HF) -436 (MP2)	+1 (HF) -2 (MP2)	
$[\operatorname{Au}(\operatorname{C}_6\operatorname{F}_5)_2]^-\cdots[\operatorname{Tl}]^+\operatorname{C}_s$	Not converg	ed in C _s symmetr	ry .			

Table 6 DFT-B3LYP optimized Au···Tl, $M \cdots C_{ipso}$ and $M \cdots X$ (X = F or Cl) interaction distances (Å) and HF and MP2-BSSE-corrected interaction energies (kJ mol⁻¹) for models $[AuR_2]^- \cdots [Tl]^+$ with C_{2v} , C_2 , and C_s symmetries (R = C₆Cl₅ and C₆F₅)

result, together with non-converged C_s [Au(C_6F_5)₂]^{-...}Tl⁺ case, demonstrates a clear preference of the Tl⁺ ions for a C₂ symmetry leading to Tl^{...}X_{ortho} interactions. If we analyze carefully the experimental results, the most common feature of aurate–thallium complexes is the existence of such type of additional Tl^{...}X interactions in the presence or not of Tl^{...}C_{ipso} interactions, in contrast to what we observe for Au–Ag and Au–Cu model systems. Again, the theoretical results show here a good agreement with the experimental ones [13–17, 24–33]. Finally, comparison of these results with calculations with higher correlated methods as CCDS(T) [42] ones are envisaged.

4 Conclusions

Several interesting conclusions can be stated in view of the theoretical analysis of the aurate-heterometal interactions as follows:

- 1. The basicity of the aurates has been analyzed in their interaction with the silver(I) center as a representative example of closed-shell cation, leading to a basicity order: $[Au(C_6Cl_5)_2]^- > [Au(C_6F_3Cl_2)_2]^- > [Au(C_6F_5)_2]^-$, although with interaction energy values in a similar energy range.
- 2. The analysis of the Au–Ag systems is in agreement with a preference for $Ag \cdots C_{ipso}$ interaction when $R = C_6F_5$ and $Ag \cdots Cl$ interaction when $R = C_6Cl_5$. In the case of Au–Cu systems, the preference is always the Cu \cdots C_{*ipso*} interaction even if the perhalophenyl group is C₆Cl₅, what would be rationalized in terms of atom size.
- 3. The analysis of the Au–Tl systems displays a clear preference for Tl…X_{ortho} interactions, even in the case of C_6F_5 that does not converge in C_s symmetry (Tl… C_{ipso} interaction) even if the C_{ipso} bears electron density for a possible interaction. This last trend would also be rationalized in terms of atom size, although the change of hybridization in the case of Tl(I) bearing a $6s^2$ lone pair would influence in the electronic requirements of the acidic Tl⁺ site.

Acknowledgments The D.G.I.(MEC)/FEDER (CTQ2010-20500-C02-02), European Commission, POCTEFA (MET-NANO EFA 17/08) and CSIC-U. de Chile 02/09-10 projects are acknowledged. We also thank to the Centro de Computación de Galicia (CESGA) for computational resources.

References

1. Laguna A (ed) (2008) Modern supramolecular gold chemistry. Wiley-VCH, Weinheim

- 2. Pyykkö P (1997) Chem Rev 97:597
- 3. Pyykkö P (2004) Angew Chem Int Ed 43:4412
- 4. Pyykkö P (2005) Inorg Chim Acta 358:4113
- 5. Pyykkö P (2008) Chem Soc Rev 37:1967
- Fernández EJ, Laguna A, López-de-Luzuriaga JM (2007) Dalton Trans 1969
- Forward JM, Fackler, JP Jr, Assefa Z (1999) In: Roundhil DM, Fackler JP Jr (eds) Optoelectronic properties of inorganic compounds. Plenum, New York
- Fernández EJ, Gimeno MC, Laguna A, López-de-Luzuriaga JM, Monge M, Pyykkö P, Sundholm D (2000) J Am Chem Soc 122:7287
- Fernández EJ, López-de-Luzuriaga JM, Monge M, Olmos ME, Puelles RC, Laguna A, Mohamed AA, Fackler JP Jr (2008) Inorg Chem 47:8069
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Rodríguez-Castillo M (2006) Organometallics 26:3639
- Fernández EJ E, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME (2005) Inorg Chem 44:1163
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Rodríguez-Castillo M (2006) Dalton Trans 2009:7509
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Mendizabal F, Monge M, Olmos ME, Pérez J (2003) Chem Eur J 9:456
- Fernández EJ, López-de-Luzuriaga JM, Monge M, Olmos ME, Pérez J, Laguna A, Mohamed AA, Fackler JP Jr (2003) J Am Chem Soc 125:2022
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Olmos ME, Pérez J (2002) J Am Chem Soc 124:5942
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Montiel M, Olmos ME, Pérez J (2006) Organometallics 25:1689
- Fernández EJ, Laguna A, Lasanta T, López-de-Luzuriaga JM, Montiel M, Olmos ME (2008) Organometallics 27:2971
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Mendizabal F (2008) J Mol Struct 851:121
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Nema M, Olmos ME, Pérez J, Silvestru C (2007) Chem Commun 571
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Pérez J, Puelles RC, Sáenz JC (2005) Dalton Trans 1162
- Fernández EJ, Hardacre C, Laguna A, Lagunas MC, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Puelles RC, Sánchez-Forcada E (2009) Chem Eur J 15:6222
- Uson R, Laguna A, Laguna M, Jones PG, Sheldrick GM (1981) J Chem Soc Chem Commun 1097
- Uson R, Laguna A, Laguna M, Manzano BR, Jones PG, Sheldrick GM (1984) J Chem Soc Dalton Trans 285
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Olmos ME, Pérez J (2004) Dalton Trans 1801
- Fernández EJ, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Pérez J, Laguna A, Mendizabal F, Mohamed AA, Fackler JP Jr (2004) Inorg Chem 43:3573
- Fernández EJ, Jones PG, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME, Pérez J (2004) Z Naturforsch B 59:1379
- Fernández EJ, Jones PG, Laguna A, López-de-Luzuriaga JM, Monge M, Pérez J, Olmos ME (2002) Inorg Chem 41:1056
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Olmos ME, Pérez J (2003) Chem Commun 1760
- Crespo O, Fernández EJ, Jones PG, Laguna A, López-de-Luzuriaga JM, Mendía A, Monge M, Olmos E (1998) Chem Commun 2233
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Montiel M, Olmos ME, Pérez J (2005) Organometallics 24:1631

- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Monge M, Montiel M, Olmos ME (2007) Inorg Chem 46:2953
- Fernández EJ, Laguna A, López-de-Luzuriaga JM, Montiel M, Olmos ME, Pérez J (2005) Inorg Chim Acta 358:4293
- Fernández EJ, López-de-Luzuriaga JM, Olmos ME, Pérez J, Laguna A, Lagunas MC (2005) Inorg Chem 44:6012
- 34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW,

Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, Rev. E. 01. Gaussian Inc, Wallingford

- 35. Boys SF, Bernardi F (1970) Mol Phys 19:553
- 36. Herschbach DR, Laurie VW (1961) J Chem Phys 35:458
- Andrae D, Häusserman U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123
- 38. Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1451
- Bergner A, Dolg M, Küchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431
- 40. Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam
- Fernández EJ, Laguna A, Olmos ME (2009) Coord Chem Rev 252:1630
- Riedel S, Pyykkö P, Mata RA, Werner HJ (2005) Chem Phys Lett 405:148